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Abstract

Financial time series forecasting is a crucial measure for improving and making more robust

financial decisions throughout the world. Noisy data and non-stationarity information are the

two key factors in financial time series prediction. This paper proposes twin support vector

regression for financial time series prediction to deal with noisy data and nonstationary infor-

mation. Various interesting financial time series datasets across a wide range of industries,

such as information technology, the stock market, the banking sector, and the oil and petro-

leum sector, are used for numerical experiments. Further, to test the accuracy of the predic-

tion of the time series, the root mean squared error and the standard deviation are

computed, which clearly indicate the usefulness and applicability of the proposed method.

The twin support vector regression is computationally faster than other standard support

vector regression on the given 44 datasets.

Introduction

For the last two decades in the machine learning area, support vector machines (SVMs) have

been a computationally powerful kernel-based tool for various classification problems, such as

pattern recognition and regression problems and function approximations [1]. It has the

advantages over other methods, such as artificial neural networks (ANN), which focus on min-

imizing the empirical risk in the training phase, whereas SVM was developed on the structural

risk minimization principle [1], which minimizes the upper bound on the generalization

error. Another advantage of SVM is that it forms a convex optimization problem, a single

large quadratic programming problem (QPP) that yields a unique global solution. The SVM

has been applied in many fields to solve various well-known real-world problems ranging

from image classification [2], remote sensing image classification [3], text characterization [4],

biomedicine [5, 6], time series prediction [7, 8] and business prediction [9], which clearly jus-

tify its popularity.

To obtain an optimal regressor function for a given set of training data, support vector

regression (SVR) was introduced by Vapnik [1], where training data points are in the input
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space or in a higher dimensional space via kernel mapping. The SVR has the advantage of bet-

ter generalization performance than the other regression methods. However, standard SVM

has a drawback in that it optimizes a computationally expensive cost function for large-scale

datasets that have high training costs, i.e., O(m3), where m is the number of training samples.

Due to this high training cost, it is not easy to find the optimal parameters from a large set of

parameters. To address this issue, different variants of SVM have been proposed, such as

chunking and decomposition methods [10, 11], exact SVM training algorithm SMO [12],

approximate SVM training algorithms [13–15] and LS-SVM [16, 17].

Mangasarian and Wild [18] suggested a new method for binary classification as a gen-

eralized eigenvalue proximal support vector machine (GEPSVM) based on two nonparal-

lel hyperplanes. To find the nonparallel hyperplanes, GEPSVM solves two eigenvalue

problems based on the size of the input space dimensions. The GEPSVM outperforms the

standard SVM in terms of computational speed and accuracy. Similarly, in the spirit of

GEPSVM, twin support vector machine (TWSVM) has recently been proposed [19] for

binary classification problems that consist of two nonparallel planes, for example, where

each plane is closer to the data points of one of the two classes and as far as possible from

the data points of the other class. In TWSVM, two QPPs of smaller size are solved to

obtain two nonparallel hyperplanes instead of a QPP of large size. This strategy gives

TWSVM good generalization ability, making it better than GEPSVM and approximately

four times faster than the standard SVM. The main difference between GEPSVM and

TWSVM is that GEPSVM solves two generalized eigenvalue problems to obtain the hyper-

planes because TWSVM solves two related SVM-type problems to obtain the hyperplanes.

Peng [20] recently proposed a twin support vector regression technique based on

TWSVM in which an unknown regressor function is generated by the construction of

nonparallel insensitive up and down bound functions. In this case, it solves a pair of two

smaller sized QPPs unlike the large QPP solved in the case of SVR. To find the solution to

this problem through machine learning approaches, various methods have been applied,

such as artificial neural networks [21], statistical learning [22], fuzzy logic [23–26], neural

networks [27–29], evolutionary algorithms [30] and hidden Markov models [31]. Eugene

et al. [32], estimated that the factors for high expected returns that are due to future price

increases are only offset through the decrementing of the current price. Therefore,

expected returns based on the variable time generate temporary subsets of different prices.

Lewellen et al. [33] proposed an approach for testing the prediction of aggregate financial

ratios, named predictive regression, on small-scale sample biases. Goh et al. [34] tried to

find the relationship between the U.S. and Chinese economic variables and predicted the

economic variable for each country that justifies which country’s economic variables are

greater than others. In 2017, Shen et al. [35] presented a novel method for predicting the

Chinese stock returns for different asset values using the Baidu index. Similarly, Li et al.

(2018) [36] found that idiosyncratic volatility significantly grows when internet stock

message boards are already built up.

The prediction of stock market indices has been the focus of interest from the day the

stock market came into existence. Researchers have several goals and motivations for try-

ing to predict stock market prices. One of the motivations could be to make life easier and

more luxurious. Many investment professionals, along with researchers, are trying to find

a superior system that will yield high returns in terms of financial gain. There has been

considerable work performed to predict the behavior of the stock market. To perform the

financial time series prediction, various parameters are involved: (a) price of the last trade

performed during the day, (b) total number of commodities traded during the day, and

(c) lowest and highest traded price [37]. Because of these parameters, the nonlinearity and
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uncertainty involved in the prediction of financial time series forecasting, this paper pro-

poses TSVR to address these situations. To determine the effectiveness of TSVR on finan-

cial time series datasets, first, this paper discusses the formulation of TSVR and then the

performance of the numerical experiments for various financial datasets. The experimen-

tal results of TSVR are compared with the standard SVR formulation with accuracy in

terms of average RMSE and training time.

The remainder of this paper is organized as follows: Sections 2 and 3 discuss the formula-

tion of SVR and TSVR, respectively. Section 4 shows the experimental results on different

financial time series datasets of TSVR and comparison results with SVR. Finally, conclusions

are drawn in section 5.

Support vector regression

This section describes the standard formulation of support vector regression (SVR). Assume

that a set of training samples is {(x1,y1)}i = 1,2,. . .,m where xi = (xi1,xi2,. . .,xin)t2Rn is the input

example and yi2R is the target value for i = 1,2,. . .,m, where m corresponds to input training

samples. Let matrix D2Rm×n denote the input examples where xti is the i-th row and y = (y1,. . .,

ym)t is the vector of observed values. The main goal of SVR is to approximate the regression

function f(.) in the form

f ðxÞ ¼ xtwþ b ð1Þ

where unknowns w is the vector and b is a scalar value.

Vapnik [1] suggested the formulations of SVR by introducing the ε-insensitive loss func-

tion and determining the unknown variables w and b by solving the following QPP:

min
ðw;b;x1 ;x2Þ2Rnþ1þmþm

1

2
wtwþ Cðetx1 þ etx2Þ;

subject to:

yi � xtiw � b � εþ x1i;

xtiwþ b � yi � εþ x2i

and

x1i � 0; x2i � 0 for i ¼ 1; 2; . . .;m ð2Þ

where ξ1 = (ξ1i,. . .,ξ1m)t, ξ2 = (ξ21,. . .,ξ2m)t are slack variables in vector form, and C>0 and ε>0

denote the input parameters.

Here, the solution of the above problem is obtained by introducing Lagrange multipliers

min
l1;l22Rm

1

2

Xm

i;j¼1

ðl1i � l2iÞ
txtixjðl1j � l2jÞ þ ε

Xm

i¼1

ðl1i þ l2iÞ �
Xm

i¼1

yiðl1i � l2iÞ

subject to:

Xm

i¼1

ðl1i � l2iÞ ¼ 0

0 � l1; l2 � Ce; ð3Þ

where the Lagrange multipliers are λ1 = (λ11,. . .,λ1m)t and λ2 = (λ21,. . .,λ2m)t in Rm, which give
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the solution to the above quadratic problem. Here, nonzero values of Lagrangian multipliers,

which are known as support vectors in Eq (3) are useful for predicting the regression function,

which is defined for any x2Rn as

f ðxÞ ¼
Xm

i¼1

ðl1i � l2iÞðx
txiÞ þ b ð4Þ

For a nonlinear regressor, the input data maps to a higher dimensional feature space using a

kernel function k (.,.) which is defined by the Gaussian kernel as k(xi,xj) = exp(−μkxi−xjk2) for

i, j = 1,2,. . .,m and μ is a parameter. The nonlinear case can be obtained as

min
l1 ;l22Rm

1

2

Xm

i;j¼1

ðl1i � l2iÞ
tkðxi; xjÞðl1j � l2jÞ þ ε

Xm

i¼1

ðl1i þ l2iÞ �
Xm

i¼1

yiðl1i � l2iÞ

subject to:

Xm

i¼1

ðl1i � l2iÞ ¼ 0

0 � l1; l2 � Ce; ð5Þ

The nonlinear prediction function f (.) is given by finding the value of λ1 and λ2 from the solu-

tion of the problem mentioned in Eq (5) for any x2Rn,

f ðxÞ ¼
Xm

i¼1

ðl1i � l2iÞkðx; xiÞ þ b

Twin support vector machine

To further improve the generalization performance and training time of SVR, a new approach

was discussed by Peng [20], termed TSVR. The TSVR constructs a pair of nonparallel hyper-

planes such that one of the hyperplanes determines the ε-insensitive downbound f1(x) =

xtw1+b1 and another ε-insensitive upbound function f2(x) = xtw2+b2 to identify the end regres-

sion function. The TSVR solves a pair of smaller QPPs of m constraints to identify the solution

instead of solving a single large QPP with a 2 m number of constraints.

The formulation of TSVR determines the regression function by the following pair of con-

strained QPPs as:

min
1

2
ky � eε1 � ðDw1 þ eb1Þk

2
þ C1e

tx

subject to:

y � ðDw1 þ eb1Þ � eε1 � x; x � 0 ð6Þ

min
1

2
kyþ eε2 � ðDw2 þ eb2Þk

2
þ C2e

tZ

subject to:

ðDw2 þ eb2Þ � y � eε2 � Z; Z � 0 ð7Þ

where C1,C2>0 and ε1,ε2�0 denote input parameters, ξ = (ξ1,. . .ξm)t and η = (η1,. . .ηm)t

denote the vector of slack variables.
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To find the solution of the above primal-based QPPs shown in Eqs (6) and (7), we convert

the QPPs into dual forms by using the Lagrange multipliers λ1 = (λ11,. . .λ1m)t, ν1 = (ν11,. . .

ν1m)t and λ2 = (λ21,. . .λ2m)t, ν2 = (ν21,. . .ν2m)t. The Lagrangian functions of Eqs (6) and (7) are

given by Eqs (8) and (9), respectively.

L1ðw1; b1; x; l1; n1Þ

¼
1

2
ky � eε1 � ðDw1 þ eb1Þk

2
þ C1e

tx � l1ðy � ðDw1 þ eb1Þ � eε1 þ xÞ � n
t
1
xð8Þ

L2ðw2; b2; Z; l2; n2Þ

¼
1

2
kyþ eε2 � ðDw2 þ eb2Þk

2
þ C2e

tZ � l2ððDw2 þ eb2Þ � y � eε2 þ ZÞ � n
t
2
Zð9Þ

By applying the KKT conditions for the Lagrangian function as shown in Eq (8), we obtain:

� Dtðy � Dw1 � eb1 � eε1Þ þ Dtl1 ¼ 0; ð10Þ

� etðy � Dw1 � eb1 � eε1Þ þ etl1 ¼ 0; ð11Þ

C1e � l1 � n1 ¼ 0; ð12Þ

y � ðDw1 þ eb1Þ � eε1 � x; x � 0; ð13Þ

l
t
1
ðy � ðDw1 þ eb1Þ � eε1 � xÞ ¼ 0; l1 � 0; ð14Þ

nt
1
x ¼ 0; n1 � 0; ð15Þ

Since ν1�0, we have

0 � l1 � C1e: ð16Þ

Similarly, for the Lagrangian function as shown in Eq (9), we obtain

� Dtðy � Dw2 � eb2 þ eε2Þ � Dtl2 ¼ 0; ð17Þ

� etðy � Dw2 � eb2 þ eε2Þ � etl2 ¼ 0; ð18Þ

C2e � l2 � n2 ¼ 0; ð19Þ

ðDw2 þ eb2Þ � y � eε2 � Z; Z � 0; ð20Þ

l
t
2
ððDw2 þ eb2Þ � y � eε2 � ZÞ ¼ 0; l2 � 0; ð21Þ

nt
2
Z ¼ 0; n2 � 0; ð22Þ

Since ν2�0, we have

0 � l2 � C2e: ð23Þ
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Combining Eq (10) with Eq (11) and Eq (17) with Eq (18), we obtain

�
Dt

et

" #

ðy � eε1Þ � ½D e �
w1

b1

2

4

3

5

8
<

:

9
=

;
þ

Dt

et

" #

l1 ¼ 0 ð24Þ

�
Dt

et

" #

ðyþ eε2Þ � ½D e �
w2

b2

2

4

3

5

8
<

:

9
=

;
�

Dt

et

" #

l2 ¼ 0 ð25Þ

Let us define,

S ¼ ½D e�; u1 ¼ ½w
t
1
b1�

t
; u2 ¼ ½w

t
2
b2�

t
; f1 ¼ y � eε1; f2 ¼ yþ eε2; ð26Þ

and then we have,

� Stf1 þ StSu1 þ Stl1 ¼ 0;

i.e.,

u1 ¼ ðS
tSÞ� 1Stðf1 � l1Þ: ð27Þ

and

� Stf2 þ StSu2 � Stl2 ¼ 0;

, i.e.,

u2 ¼ ðS
tSÞ� 1Stðf2 þ l2Þ: ð28Þ

Here, note that StS is positive semidefinite, but to overcome the situation in which its inverse

does not exist, σI is introduced as a regularization term, so that (StS+σI) becomes positive defi-

nite where σ is a very small positive number, such as σ = Ie-7. Thus, we have

u1 ¼ ðS
tSþ sIÞ� 1Stðf1 � l1Þ ð29Þ

u2 ¼ ðS
tSþ sIÞ� 1Stðf2 þ l2Þ ð30Þ

Substituting Eq (29) into the primal Lagrangian function Eq (8) and using Eqs (13) to (16), the

dual problem of Eq (6) is obtained as

max �
1

2
l
t
1
SðStSÞ� 1Stl1 þ f t

1
SðStSÞ� 1Stl1 � f t

1
l1

subject to:

0 � l1 � eC1 ð31Þ

Similarly, substituting Eq (30) into the primal Lagrangian function Eq (9) and using Eq (20) to

(23), the dual problem of Eq (7) is obtained as

max �
1

2
l
t
2
SðStSÞ� 1Stl2 � f t

2
SðStSÞ� 1Stl2 þ f t

2
l2

subject to:

0 � l2 � eC2 ð32Þ
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The vectors λ1 and λ2 are calculated by solving the dual QPPs Eqs (31) and (32). Finally, in the

output for any data point x2Rn, the end regressor f(.) is given by:

f ðxÞ ¼
1

2
ðf1ðxÞ þ f2ðxÞÞ: ð33Þ

To extend TSVR to a nonlinear case, TSVR finds the regression function by solving the follow-

ing primal problems:

min
1

2
ky � eε1 � ðKðD;D

tÞw1 þ eb1Þk
2
þ C1e

tx

subject to:

y � ðKðD;DtÞw1 þ eb1Þ � eε1 � x; x � 0 ð34Þ

and

min
1

2
kyþ eε2 � ðKðD;D

tÞw2 þ eb2Þk
2
þ C2e

tZ

subject to:

ðKðD;DtÞw2 þ eb2Þ � y � eε2 � Z; Z � 0 ð35Þ

where the kernel matrix K(D,Dt) of order m whose (i, j) element is given by K(D,Dt)ij = k(xi,
xj)2R, and where k(xi,xj) is a nonlinear kernel function. For a vector x2Rn, we define

kðxt;DtÞ ¼ ðkðx; x1Þ; . . .; kðx; xmÞÞ

in a similar manner, the dual formulations of QPPs Eqs (34) and (35) are given by Eqs (36)

and (37), respectively.

max �
1

2
l
t
1
TðTtTÞ� 1Ttl1 þ f t

1
TðTtTÞ� 1Ttl1 � f t

1
l1

subject to:

0 � l1 � eC1 ð36Þ

and

max �
1

2
l
t
2
TðTtTÞ� 1Ttl2 � f t

2
TðTtTÞ� 1Ttl2 þ f t

2
l2

subject to:

0 � l2 � eC2 ð37Þ

where T = [K(D,Dt) e]. After resolving Eqs (36) and (37), we find the value of u1 and u2 as

u1 ¼ ðT
tT þ sIÞ� 1Ttðf1 � l1Þ ð38Þ

u2 ¼ ðT
tT þ sIÞ� 1Ttðf2 þ l2Þ ð39Þ
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Finally, for any data sample x2Rn, the end regression function f(.) is given by:

f ðxÞ ¼
1

2
ð½Kðxt;DtÞ 1�ðu1 þ u2ÞÞ ð40Þ

Numerical experiments

In this section, various numerical experiments are conducted to test the generalization perfor-

mance and the computational efficiency of the TSVR on standard datasets and compared with

SVR. This paper considered 44 benchmark datasets and divided them into two groups. The

first group has a combination of 24 individual company stocks, and the second group has 20

stock market index datasets from the Yahoo financial website, i.e., http://finance.yahoo.com

[38]. Individual company stock datasets are AT&T Inc. (T), Infosys Limited (INFY), Apple,

Inc. (AAPL), Facebook, Inc. (FB), Cisco Systems, Inc. (CSCO), Alphabet, Inc. (Goog),

Citigroup, Inc. (C), HSBC Holding Plc (HSBC), ICICI Bank, Ltd. (IBN), Royal Bank of Canada

(RY), Royal Bank of Scotland (RBS), State Bank of India (SBIN.NS), Punjab National Bank

(PNB.NS), International Business Machines Corporation (IBM), Microsoft Corporation

(MSFT), Tata Consultancy Services Limited (TCS.BO), Oracle Corporation (ORCL), Bharat

Petroleum Corporation Limited (BPCL.NS), Oil India Limited (OIL.NS), Oil and Natural Gas

Corporation (ONGC.NS), Royal Dutch Shell Plc (RDS-B), Exxon Mobil Corporation (XOM),

Sinopec Shanghai Petrochemical Company Limited (SHI), Hindustan Petroleum Corporation

Limited (HINDPETRO.NS) and the stock market index datasets are S&P BSE SENSEX

(BSESN), NIFTY 50 (NSEI), CAC 40 (FCHI), ESTX 50 PR.EUR (STOXX50E), KOSPI Com-

posite (KS11), IBEX 35 (IBEX), Nikkei 225 (N225), AEX (AEX), DAX PERFORMANCE

(GDAXI), IBOVESPA (BVSP), S&P/TSX Composite (GSPTSE), IPC MEXICO (MXX), SMI

PR (SSMI), Dow Jones Industrial Average (DJI), HANG SENG INDEX (HSI), TSEC weighted

index (TWII), NASDAQ Composite (IXIC), BEL 20 (BFX), Austrian Traded Index in EUR

(ATX), Jakarta Composite Index (JKSE). The details of these datasets are listed in Table 1 and

Table 2, respectively.

All computations are carried out on a PC with Windows 7 OS, with a 32 bit, 3.10 GHz Intel

core i5-2400 processor with 4 GB of RAM under the MATLAB R2012b environment. This

paper used the MOSEK optimization toolbox to solve the quadratic programming problem in

SVR and TSVR formulations, which is taken from http://www.mosek.com [39].

All the datasets are normalized in the following manner so that each feature value lies in

[0, 1]:

�dij ¼
dij � dmin

j

dmax
j � dmin

j

where �dij is the normalized value corresponding to dij and dmax
j ¼ maxmi¼1

ðdijÞ and dmin
j ¼

minmi¼1
ðdijÞ denote the maximum and minimum values of the j-th feature of A, respectively. To

measure the prediction performance, this paper considered the root mean square error

(RMSE), which is given by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P

XP

i¼1

ðyi � ~yiÞ
2

s

;

where the total number of test samples is denoted by P, and ~yi is the predicted value corre-

sponding to the observed values. To construct a nonlinear regressor, we use a Gaussian kernel

kðx; yÞ ¼ expð� mkx � yk2
Þ
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PLOS ONE | https://doi.org/10.1371/journal.pone.0211402 March 13, 2019 8 / 27

http://finance.yahoo.com/
http://www.mosek.com/
https://doi.org/10.1371/journal.pone.0211402


where vector x,y2Rm and μ>0. The optimal parameter values of C = C1 = C2 are selected from

the sets {10−5,. . .,105} and μ from the set {2−5,. . .,25} for the training using 10-fold cross valida-

tion. By using the optimal values, the whole dataset is divided into 10 equal parts at random,

out of which one part is used for testing and the remaining parts for the training to obtain the

computational test accuracy. Finally, to measure the prediction, the average RMSE of the test

accuracies is considered.

Individual stocks datasets of company

Individual company stocks such as SBIN.NS, PNB.NS, BPCL.NS, OIL.NS, TCS.BO, HINDPE-

TRO.NS, ONGC.NS consist of 735 closing prices, while T, INFY, AAPL, FB, CSCO, Goog, C,

HSBC, IBN, RY, RBS, IBM, MSFT, ORCL, RDS-B, XOM, SHI have a total of 751 closing prices

starting from 01-01-2015 to 31-12-2017. The current value is predicted by the previous five

closing prices.

Linear case. In the linear case, Table 3 shows the average RMSE for the optimal parameter

values with standard deviation and the training time in seconds. Fig 1 shows the absolute pre-

diction error of SVR and TSVR for the linear kernel on the SHI dataset. Fig 2 shows the actual

and predicted values of SVR and TSVR for the linear kernel on the SHI dataset. To verify the

performance of both algorithms statistically on 24 individual stock datasets, we perform a sim-

ple, nonparametric safe test, i.e., the Friedman test with the corresponding post hoc test [40].

Table 1. Individual stock financial details with their stock exchanges, types and listing abbreviations.

Company name Registered stock exchange Listing abbreviation

AT&T Inc. Equity-NYSE T

Infosys Limited Equity-NYSE INFY

Apple Inc. Equity-NASDAQ AAPL

Facebook Inc. Equity-NASDAQ FB

Cisco Systems, Inc. Equity-NASDAQ CSCO

Alphabet Inc. Equity-NASDAQ Goog

Citigroup Inc. Equity-NYSE C

HSBC Holding Plc Equity-NYSE HSBC

ICICI Bank Ltd. Equity-NYSE IBN

Royal Bank of Canada Equity-NYSE RY

Royal Bank of Scotland Equity-NYSE RBS

State Bank of India Equity-NSE SBIN.NS

Punjab National Bank Equity-NSE PNB.NS

International Business Machines Corporation Equity-NYSE IBM

Microsoft Corporation Equity-NASDAQ MSFT

Tata Consultancy Services Limited Equity-BSE TCS.BO

Oracle Corporation Equity-NYSE ORCL

Bharat Petroleum Corporation Limited Equity-NSE BPCL.NS

Oil India Limited Equity-NSE OIL.NS

Oil and Natural Gas Corporation Equity-NSE ONGC.NS

Royal Dutch Shell Plc Equity-NYSE RDS-B

Exxon Mobil Corporation Equity-NYSE XOM

Sinopec Shanghai Petrochemical Company Limited Equity-NYSE SHI

Hindustan Petroleum Corporation Limited Equity-NSE HINDPETRO.NS

https://doi.org/10.1371/journal.pone.0211402.t001
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For this, the average rank of 24 datasets for the linear case is tabulated in Table 4. The Fried-

man statistic [40] can be computed under the null hypothesis, as shown in Table 4.

w2

F ¼
12� 24

2� ð2þ 1Þ
ð1:4166672 þ 1:5833332Þ �

2� ð2þ 1Þ
2

4

� �

ffi 0:6667

FF ¼
ð24 � 1Þ � 0:6667

24� ð2 � 1Þ � 0:6667
ffi 0:6572

where FF is distributed according to the F-distribution with (1, 23), which has the critical value

4.2793 for the level of significance α = 0.05. Here, FF is lower than the critical value, i.e., 0.6572

<4.2793, so there is no significant difference between these two algorithms for the linear case.

Nonlinear case. In the nonlinear case, Table 5 shows the average RMSE for the optimal

parameter values with the standard deviation and the training time in seconds. From Table 5,

we can conclude that TSVR gives better results in 19 cases out of 24 datasets in terms of aver-

age RMSE of test accuracy, which signifies the performance of TSVR in comparison to SVR in

terms of prediction. Additionally, it shows the superiority of TSVR with respect to SVR in

terms of computational time.

Similar to linear case, for individual stocks, the Friedman statistic can be computed under

the null hypothesis from Table 4, which shows that both algorithms have a similar perfor-

mance:

w2

F ¼
12� 24

2� ð2þ 1Þ
ð1:7916672 þ 1:2083332Þ �

2� ð2þ 1Þ
2

4

� �

ffi 8:1667

FF ¼
ð24 � 1Þ � 8:1667

24� ð2 � 1Þ � 8:1667
ffi 11:8632

Table 2. Financial stock market index details with their stock exchanges, types and listing abbreviations.

Stock market index name Registered stock exchange Listing abbreviation

S&P BSE SENSEX Index-Bombay Stock Exchange BSESN

NIFTY 50 Index-National Stock Exchange NSEI

CAC 40 Index-Paris Stock Exchange FCHI

ESTX 50 PR.EUR Index-Zurich Stock Exchange STOXX50E

KOSPI Composite Index Index-Korea Stock Exchange KS11

IBEX 35. Index-Madrid Stock Exchange IBEX

Nikkei 225 Index-Osaka Stock Exchange N225

AEX-INDEX Index-Amsterdam Stock Exchange AEX

DAX PERFORMANCE-INDEX Index-Xetra, Frankfurt Stock Exchange GDAXI

IBOVESPA Index-Sao Paolo Stock Exchange BVSP

S&P/TSX Composite index Index-Toronto Stock Exchange GSPTSE

IPC MEXICO Index-Mexico Stock Exchange MXX

SMI PR Index-VTX,SIX Swiss Exchange SSMI

Dow Jones Industrial Average Index-New York Stock Exchange DJI

HANG SENG INDEX Index-Hong Kong Stock Exchange HSI

TSEC weighted index Index-Taiwan Stock Exchange TWII

NASDAQ Composite Index-Nasdaq GIDS, American stock exchange IXIC

BEL 20 Index-Brussels Stock Exchange BFX

Austrian Traded Index in EUR Index-Vienna Stock Exchange ATX

Jakarta Composite Index Index-Jakarta Stock Exchange JKSE

https://doi.org/10.1371/journal.pone.0211402.t002
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Table 3. Performance comparison of TSVR with SVR on individual companies’ stock datasets using a linear ker-

nel. RMSE is used for comparison. Time is used for the training in seconds.

Dataset SVR

(C)

Time

TSVR

(C1 = C2)

Time

C

(751X6)

0.01865+0.00425

(10^-2)

10.9164

0.01866+0.00415

(10^2)

1.37938

HSBC

(751X6)

0.02305+0.00393

(10^-2)

11.2698

0.02306+0.004

(10^1)

1.35164

IBN

(751X6)

0.02234+0.00383

(10^-1)

11.155

0.02232+0.00389

(10^1)

1.30003

PNB_NS

(735X6)

0.02609+0.01228

(10^-1)

10.5834

0.026+0.0123

(10^2)

1.6011

RY

(751X6)

0.0186+0.00467

(10^-1)

11.6193

0.05662+0.10278

(10^5)

1.48767

RBS

(751X6)

0.01923+0.00868

(10^-2)

11.5917

0.01923+0.00869

(10^1)

1.05937

SBIN_NS

(735X6)

0.02872+0.00915

(10^0)

10.885

0.02885+0.00922

(10^1)

1.72065

AAPL

(751X6)

0.01989+0.0037

(10^-3)

11.6285

0.0199+0.00368

(10^2)

1.05923

AT&T

(751X6)

0.03191+0.00567

(10^-2)

11.6016

0.11026+0.25187

(10^5)

1.31281

CSCO

(751X6)

0.02219+0.00506

(10^-1)

11.0575

0.02221+0.00506

(10^2)

0.95512

FB

(751X6)

0.01507+0.00474

(10^-1)

11.1297

0.01506+0.00476

(10^2)

1.23056

GOOG

(751X6)

0.01647+0.00412

(10^-1)

11.1765

0.09118+0.23693

(10^5)

1.24606

IBM

(751X6)

0.02789+0.0057

(10^-2)

10.8029

0.02781+0.00573

(10^2)

0.98122

INFY

(751X6)

0.04022+0.01021

(10^-2)

10.7731

0.04016+0.01022

(10^0)

1.00669

MSFT

(751X6)

0.01601+0.00416

(10^-1)

10.9651

0.01604+0.00411

(10^2)

1.04679

ORCL

(751X6)

0.02717+0.00563

(10^-1)

10.9254

0.02719+0.00563

(10^2)

1.56594

TCS_BO

(735X6)

0.02581+0.0391

(10^-1)

10.387

0.02301+0.03058

(10^-1)

1.01678

BPCL_NS

(735X6)

0.02017+0.00389

(10^-1)

10.3464

0.02012+0.00392

(10^2)

1.23517

HINDPETRO_NS

(735X6)

0.01594+0.00654

(10^-2)

10.8712

0.02444+0.02563

(10^5)

1.12206

OIL_NS

(735X6)

0.02393+0.00654

(10^-2)

10.3806

0.02389+0.00651

(10^1)

1.06545

(Continued)
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where FF is the distribution according to the F-distribution and (1,1×23) = (1, 23) is the degree

of freedom. Here, 4.2793 is the critical value of F(1,23) for the level of significance at α = 0.05.

Since the value of FF = 11.8632>4.2793, we reject the null hypothesis. Furthermore, we per-

formed pairwise comparisons using the Nemenyi post hoc test of all reported methods and veri-

fied the significant difference between their average ranks by computing the critical difference

(CD) at p = 0.10. The difference between their ranks should be at least 1:645

ffiffiffiffiffiffiffiffiffiffiffi
2�ð2þ1Þ

6�24

q

� 0:3358.

Since the difference between the average ranks of TSVR with SVR (1.791667−1.208333 =

0.583334) is greater than 0.3358, we conclude that TSVR is significantly better than SVR for

individual stock datasets. For the non-linear case, the absolute prediction error of SVR and

Table 3. (Continued)

Dataset SVR

(C)

Time

TSVR

(C1 = C2)

Time

ONGC_NS

(735X6)

0.02515+0.00599

(10^-1)

10.3224

0.02521+0.00602

(10^2)

1.23187

RDS_B

(751X6)

0.02553+0.00797

(10^-1)

10.8088

0.0255+0.00802

(10^1)

1.34066

SHI

(751X6)

0.03325+0.01405

(10^-2)

10.7923

0.03331+0.01461

(10^2)

1.1263

XOM

(751X6)

0.03385+0.01181

(10^-3)

10.7708

0.0339+0.0119

(10^2)

1.2065

https://doi.org/10.1371/journal.pone.0211402.t003

Fig 1. Prediction error plots using a linear kernel on the SHI dataset.

https://doi.org/10.1371/journal.pone.0211402.g001
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TSVR is shown in Figs 3 and 4 for the FB and RY datasets, respectively. Additionally, the actual

and predicted values of SVR and TSVR are plotted in Figs 5 and 6 for the FB and RY datasets,

respectively. It can easily be observed that TSVR is in close agreement with the observed values

compared to SVR.

Stock market index datasets

Stock market index datasets such as BSESN and HSI consist of 733 closing prices, while DJI

and IXIC have 751 closing prices; the FCHI and IBEX datasets consist of 763 closing prices;

the JKSE and TWII datasets consist of 724 closing prices; MXX and SSMI have 750 closing

points; AEX consists of 763 closing points; ATX consists of 737 closing points; BFX consists of

762 closing points; BVSP consists of 738 closing points and GDAXI, GSPTSE, KS11, N225,

NSEI, STOXX50E consist of 755, 748,728, 732, 731, 745 closing points, respectively, from 01-

01-2015 to 31-12-2017. The current value is predicted by using the previous five closing prices.

Linear case. For the linear kernel, Table 6 shows the average RMSE for the optimal parame-

ter values with the standard deviation and the training time in seconds. We can conclude that

TSVR gives better results in 13 cases out of 20 datasets in terms of average RMSE of test accuracy.

Additionally, the training time of TSVR is lower than that of SVR. The Friedman statistical non-

parametric post hoc test is performed on the average rank of 20 financial datasets from Table 7.

The Friedman statistic [40] can be computed under the null hypothesis for the linear case:

w2

F ¼
12� 20

2� ð2þ 1Þ
ð1:652 þ 1:352Þ �

2� ð2þ 1Þ
2

4

� �

ffi 1:80

FF ¼
ð20 � 1Þ � 1:8

20� ð2 � 1Þ � 1:8
ffi 1:8791

where FF is distributed according to the F-distribution with (1,19), which has the critical value

4.3807 for the level of significance α = 0.05. Here, FF is less than the critical value, so there is no

Fig 2. Predicted and actual values using a linear kernel on the SHI dataset.

https://doi.org/10.1371/journal.pone.0211402.g002
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significant difference between these two algorithms for the linear case. Fig 7 shows the absolute

prediction error plot of SVR and TSVR for the linear kernel on the BFX dataset. Fig 8 also shows

the actual and predicted values of SVR and TSVR for the linear kernel on the market stock index

BFX dataset. One can easily conclude that TSVR is in close agreement with the target values

compared to SVR.

Nonlinear case. For the non-linear kernel, Table 8 shows the average RMSE for the opti-

mal parameter value with the standard deviation and the training time in seconds. We can

conclude that TSVR gives better results in 19 out of 20 datasets in terms of average RMSE of

test accuracy. The training time of TSVR is less than that of SVR due to solving a pair of

smaller-sized QPPs instead of a large QPP, as in the case of SVR. This shows the superiority of

TSVR with respect to SVR.

In the nonlinear case for different stock market index datasets, the Friedman statistic can

be computed under the null hypothesis from Table 7 as:

w2

F ¼
12� 20

2� ð2þ 1Þ
ð1:952 þ 1:052Þ �

2� ð2þ 1Þ
2

4

� �

ffi 16:2

FF ¼
ð20 � 1Þ � 16:2

20� ð2 � 1Þ � 16:2
ffi 81

Table 4. Average ranks of TSVR with SVR on individual companies’ stocks using a linear and Gaussian kernel.

Dataset Linear Non-Linear

SVR TSVR SVR TSVR

C 1 2 2 1

HSBC 1 2 1 2

IBN 2 1 2 1

PNB_NS 2 1 2 1

RY 1 2 2 1

RBS 2 1 2 1

SBIN_NS 1 2 1 2

AAPL 1 2 2 1

AT&T 1 2 1 2

CSCO 1 2 2 1

FB 2 1 2 1

GOOG 1 2 2 1

IBM 2 1 1 2

INFY 2 1 2 1

MSFT 1 2 2 1

ORCL 1 2 2 1

TCS_BO 2 1 2 1

BPCL_NS 2 1 2 1

HINDPETRO_NS 1 2 2 1

OIL_NS 2 1 2 1

ONGC_NS 1 2 2 1

RDS_B 2 1 2 1

SHI 1 2 2 1

XOM 1 2 1 2

Average rank 1.416667 1.583333 1.791667 1.208333

https://doi.org/10.1371/journal.pone.0211402.t004
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Table 5. Performance comparison of TSVR with SVR on individual companies’ stock datasets using a Gaussian

kernel. RMSE is used for comparison. Time is used for the training in seconds.

Dataset SVR

(C,μ)

Time

TSVR

(C1 = C2,μ)

Time

C

(751X6)

0.0197+0.00459

(10^0,2^-1)

12.8056

0.01925+0.00438

(10^3,2^-2)

1.84222

HSBC

(751X6)

0.02342+0.00369

(10^-1,2^-2)

12.7637

0.02355+0.00378

(10^2,2^-3)

1.46775

IBN

(751X6)

0.02394+0.00612

(10^0,2^-4)

12.6499

0.02252+0.00407

(10^2,2^-5)

1.69161

PNB_NS

(735X6)

0.02619+0.01202

(10^-1,2^-2)

12.1768

0.02598+0.01208

(10^3,2^-5)

1.45579

RY

(751X6)

0.02098+0.00585

(10^0,2^-5)

12.7447

0.01911+0.00521

(10^1,2^-5)

1.70301

RBS

(751X6)

0.01948+0.00876

(10^-1,2^-2)

12.5943

0.01939+0.00868

(10^3,2^-5)

1.5127

SBIN_NS

(735X6)

0.02908+0.00925

(10^-1,2^-2)

11.704

0.02912+0.00981

(10^2,2^-5)

1.46473

AAPL

(751X6)

0.0207+0.00421

(10^-1,2^-2)

12.3965

0.01995+0.00371

(10^2,2^-5)

1.53151

AT&T

(751X6)

0.03185+0.0057

(10^-1,2^-2)

12.3917

0.03192+0.00601

(10^2,2^-5)

1.49755

CSCO

(751X6)

0.02362+0.00534

(10^0,2^-5)

12.3661

0.02243+0.00511

(10^3,2^-5)

1.81103

FB

(751X6)

0.01743+0.00519

(10^0,2^-5)

12.2778

0.01515+0.00465

(10^2,2^-4)

1.79247

GOOG

(751X6)

0.01828+0.00648

(10^-1,2^-2)

12.3224

0.01659+0.00417

(10^2,2^-4)

1.50103

IBM

(751X6)

0.02855+0.00581

(10^0,2^-5)

12.1636

0.21208+0.12217

(10^-3,2^-3)

1.73274

INFY

(751X6)

0.0402+0.01014

(10^0,2^-4)

12.2526

0.04002+0.01014

(10^1,2^-5)

1.69419

MSFT

(751X6)

0.01793+0.00522

(10^0,2^-5)

12.3601

0.01629+0.00434

(10^3,2^-5)

1.74959

ORCL

(751X6)

0.02844+0.00647

(10^-1,2^-5)

12.2863

0.02717+0.00566

(10^2,2^-5)

1.5399

TCS_BO

(735X6)

0.0199+0.02908

(10^-1,2^2)

11.7124

0.01963+0.02914

(10^0,2^1)

1.57151

BPCL_NS

(735X6)

0.0204+0.00377

(10^0,2^-2)

11.7141

0.02023+0.00395

(10^2,2^-5)

1.61242

(Continued)
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where FF is the distribution according to the F-distribution with (1,1×19) = (1,19) as the degree

of freedom. Here, 4.3807 is the critical value of F(1,19) for the level of significance at α = 0.05.

Since the value of FF = 81>4.3807 is rejected, we reject the null hypothesis. Similar to the previ-

ous case, we perform pairwise comparisons using the Nemenyi post hoc test for all reported

Table 5. (Continued)

Dataset SVR

(C,μ)

Time

TSVR

(C1 = C2,μ)

Time

HINDPETRO_NS

(735X6)

0.01869+0.00916

(10^1,2^-4)

11.8947

0.01607+0.00664

(10^3,2^-3)

1.52778

OIL_NS

(735X6)

0.02512+0.00797

(10^0,2^-2)

11.7162

0.02407+0.0067

(10^2,2^-5)

1.63295

ONGC_NS

(735X6)

0.02644+0.00678

(10^-1,2^-4)

11.7554

0.02581+0.00658

(10^2,2^-5)

1.37471

RDS_B

(751X6)

0.02737+0.01047

(10^-1,2^-4)

12.3922

0.02587+0.00841

(10^1,2^-5)

1.48654

SHI

(751X6)

0.03433+0.01577

(10^-1,2^-4)

12.3041

0.03366+0.01511

(10^2,2^-5)

1.45092

XOM

(751X6)

0.03391+0.01177

(10^0,2^-4)

12.3424

0.03395+0.01186

(10^2,2^-5)

1.7403

https://doi.org/10.1371/journal.pone.0211402.t005

Fig 3. Prediction error plots using a Gaussian kernel on the FB dataset.

https://doi.org/10.1371/journal.pone.0211402.g003
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Fig 4. Prediction error plots using a Gaussian kernel on the RY dataset.

https://doi.org/10.1371/journal.pone.0211402.g004

Fig 5. Predicted and actual values using a Gaussian kernel on the FB dataset.

https://doi.org/10.1371/journal.pone.0211402.g005
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Fig 6. Predicted and actual values using a Gaussian kernel on the RY dataset.

https://doi.org/10.1371/journal.pone.0211402.g006

Table 6. Performance comparison of TSVR with SVR on stock market index datasets using a linear kernel. RMSE

is used for comparison. Time is used for the training in seconds.

Dataset SVR

(C)

Time

TSVR

(C1 = C2)

Time

AEX

(763X6)

0.02683+0.01051

(10^-1)

11.8233

0.02678+0.01061

(10^5)

1.47306

ATX

(737X6)

0.01886+0.00414

(10^-2)

10.3641

0.01885+0.0043

(10^1)

1.1216

BFX

(762X6)

0.03424+0.01144

(10^-1)

11.3085

0.03545+0.01039

(10^3)

1.16305

BSESN

(733X6)

0.02062+0.00448

(10^-1)

10.2492

0.02071+0.00445

(10^1)

1.22084

BVSP

(738X6)

0.01993+0.00365

(10^-2)

10.4724

0.01997+0.00379

(10^2)

0.97825

DJI

(751X6)

0.01413+0.00492

(10^-1)

10.8441

0.01419+0.0048

(10^2)

1.39238

FCHI

(763X6)

0.03166+0.01213

(10^-2)

11.1665

0.03159+0.01216

(10^2)

0.93741

(Continued)
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methods and verify the significant critical difference between their average ranks. The differ-

ence between their ranks should be at least 1:645

ffiffiffiffiffiffiffiffiffiffiffi
2�ð2þ1Þ

6�20

q

� 0:3678 at p = 0.10.

Since the difference between the average ranks of TSVR with SVR (1.95−1.05 = 0.90) is

greater than 0.3678, we conclude that TSVR is significantly better than SVR for stock market

index datasets. For the non-linear case, the absolute prediction error of SVR and TSVR is

shown in Figs 9, 10 and 11 for the BVSP, DJI and IXIC datasets, respectively. The actual and

predicted values of SVR and TSVR are plotted in Figs 12, 13 and 14 for the BVSP, DJI and

IXIC datasets, respectively. It can easily be observed from these figures that TSVR is in close

Table 6. (Continued)

Dataset SVR

(C)

Time

TSVR

(C1 = C2)

Time

GDAXI

(755X6)

0.02591+0.00872

(10^-2)

10.8492

0.02586+0.00873

(10^1)

1.12026

GSPTSE

(748X6)

0.02208+0.00768

(10^-1)

10.6209

0.02214+0.00779

(10^2)

1.28185

HSI

(733X6)

0.02125+0.00607

(10^-2)

10.2733

0.0212+0.00608

(10^1)

1.26684

IBEX

(763X6)

0.02829+0.00918

(10^-2)

11.1037

0.02828+0.0091

(10^1)

1.44011

IXIC

(751X6)

0.0165+0.00475

(10^-1)

10.8561

0.01645+0.00473

(10^2)

1.10158

JKSE

(724X6)

0.01871+0.0053

(10^-1)

10.4427

0.18938+0.36737

(10^5)

1.19995

KS11

(728X6)

0.02053+0.00366

(10^-2)

10.1628

0.02052+0.00367

(10^2)

0.90443

MXX

(750X6)

0.03059+0.00594

(10^-1)

10.6947

0.03052+0.006

(10^1)

1.47527

N225

(732X6)

0.02757+0.01059

(10^-1)

10.2778

0.02753+0.01071

(10^1)

1.14582

NSEI

(731X6)

0.01992+0.00419

(10^-1)

10.1286

0.01994+0.00419

(10^1)

1.18078

SSMI

(750X6)

0.0402+0.0164

(10^-1)

10.8077

0.04008+0.01626

(10^1)

1.32179

STOXX50E

(745X6)

0.032+0.01324

(10^-2)

10.5735

0.03193+0.01327

(10^1)

1.1432

TWII

(724X6)

0.02051+0.00474

(10^-1)

10.0368

0.02049+0.00477

(10^2)

1.23588

https://doi.org/10.1371/journal.pone.0211402.t006
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Table 7. Average ranks of TSVR with SVR on stock market index datasets using a linear and Gaussian kernel.

Dataset Linear Non-Linear

SVR TSVR SVR TSVR

AEX 2 1 2 1

ATX 2 1 2 1

BFX 1 2 2 1

BSESN 1 2 2 1

BVSP 1 2 2 1

DJI 1 2 2 1

FCHI 2 1 2 1

GDAXI 2 1 2 1

GSPTSE 1 2 2 1

HIS 2 1 2 1

IBEX 2 1 2 1

IXIC 2 1 2 1

JKSE 1 2 2 1

KS11 2 1 2 1

MXX 2 1 2 1

N225 2 1 2 1

NSEI 1 2 2 1

SSMI 2 1 1 2

STOXX50E 2 1 2 1

TWII 2 1 2 1

Average rank 1.65 1.35 1.95 1.05

https://doi.org/10.1371/journal.pone.0211402.t007

Fig 7. Prediction error plots using a linear kernel on the BFX dataset.

https://doi.org/10.1371/journal.pone.0211402.g007
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Fig 8. Predicted and actual values using a linear kernel on the BFX dataset.

https://doi.org/10.1371/journal.pone.0211402.g008

Table 8. Performance comparison of TSVR with SVR on stock market index datasets using a Gaussian kernel.

RMSE is used for comparison. Time is used for the training in seconds.

AEX

(763X6)

0.02765+0.01023

(10^0,2^-2)

12.781

0.02698+0.0106

(10^2,2^-5)

1.73396

ATX

(737X6)

0.01949+0.00416

(10^-1,2^-2)

11.907

0.01892+0.00422

(10^2,2^-5)

1.41487

BFX

(762X6)

0.03466+0.01048

(10^-2,2^-1)

12.787

0.03395+0.0117

(10^2,2^-5)

1.40597

BSESN

(733X6)

0.02264+0.00551

(10^0,2^-2)

11.8247

0.02073+0.00453

(10^3,2^-4)

1.56612

BVSP

(738X6)

0.0222+0.00447

(10^-1,2^-5)

11.9909

0.02005+0.00391

(10^2,2^-5)

1.43526

DJI

(751X6)

0.01721+0.00561

(10^0,2^-5)

12.3971

0.0155+0.00503

(10^2,2^-5)

1.74354

FCHI

(763X6)

0.03171+0.01203

(10^-1,2^-2)

12.6618

0.03156+0.01218

(10^2,2^-5)

1.53077

GDAXI

(755X6)

0.02662+0.00822

(10^-1,2^-2)

12.4439

0.02601+0.00867

(10^2,2^-5)

1.49756

GSPTSE

(748X6)

0.02627+0.0173

(10^-1,2^-2)

12.2009

0.02301+0.00875

(10^3,2^-5)

1.44924

(Continued)
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agreement with the desired output in comparison to SVR, which clearly demonstrates the

applicability and usefulness of TSVR.

Conclusion

In this paper, support vector regression and twin support vector regression formulations

are discussed in detail and applied to an individual companies’ stock indices in the area of

information technology industries, banking, oil, and petroleum industry and stock market

index datasets of different countries to predict stock prices. Here, a pair of smaller sized

QPPs is solved instead of a single large sized QPP, as in the case of SVR, thus yielding a

reduction in the cost of the system. To verify the effectiveness of TSVR, we performed

numerical experiments for both linear and Gaussian kernels on financial time series data-

sets. In experimental results, TSVR shows better learning speed for both linear and Gauss-

ian kernels with the ability to predict having a better generalization ability than SVR. In

fact, the computation time of the TSVR is approximately four times lower than the stan-

dard SVR in terms of learning speed, which clearly indicates its existence and usability. In

future work, a new model that is able to handle noise and outliers for predicting the prices

of stock indices can be explored.

Table 8. (Continued)

HSI

(733X6)

0.02189+0.00633

(10^-1,2^-2)

11.7218

0.02156+0.00623

(10^2,2^-5)

1.38225

IBEX

(763X6)

0.0285+0.00925

(10^-1,2^-4)

12.6977

0.02842+0.00915

(10^2,2^-5)

1.47464

IXIC

(751X6)

0.01906+0.00513

(10^0,2^-5)

12.3108

0.01681+0.0047

(10^2,2^-5)

1.69016

JKSE

(724X6)

0.01922+0.00522

(10^0,2^-2)

11.3828

0.01893+0.00533

(10^2,2^-2)

1.57983

KS11

(728X6)

0.02197+0.00448

(10^-1,2^-4)

11.6135

0.02073+0.00373

(10^2,2^-5)

1.34512

MXX

(750X6)

0.03145+0.00605

(10^0,2^-5)

12.4093

0.03082+0.0058

(10^2,2^-3)

1.73352

N225

(732X6)

0.02952+0.01077

(10^-1,2^-5)

12.0234

0.02839+0.01029

(10^2,2^-5)

1.3794

NSEI

(731X6)

0.02206+0.00591

(10^-2,2^-1)

11.9166

0.02013+0.00444

(10^3,2^-5)

1.29858

SSMI

(750X6)

0.04002+0.01628

(10^-1,2^-4)

12.3919

0.04007+0.0161

(10^2,2^-5)

1.42911

STOXX50E

(745X6)

0.03218+0.01336

(10^0,2^-4)

12.4306

0.03204+0.01328

(10^2,2^-5)

1.66912

TWII

(724X6)

0.02084+0.0046

(10^-1,2^-1)

11.495

0.02057+0.00472

(10^2,2^-5)

1.34332

https://doi.org/10.1371/journal.pone.0211402.t008
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Fig 9. Prediction error plots using a Gaussian kernel on the BVSP dataset.

https://doi.org/10.1371/journal.pone.0211402.g009

Fig 10. Prediction error plots using a Gaussian kernel on the DJI dataset.

https://doi.org/10.1371/journal.pone.0211402.g010
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Fig 11. Prediction error plots using a Gaussian kernel on the IXIC dataset.

https://doi.org/10.1371/journal.pone.0211402.g011

Fig 12. Predicted and actual values using a Gaussian kernel on the BVSP dataset.

https://doi.org/10.1371/journal.pone.0211402.g012
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Fig 13. Predicted and actual values using a Gaussian kernel on the DJI dataset.

https://doi.org/10.1371/journal.pone.0211402.g013

Fig 14. Predicted and actual values using a Gaussian kernel on the IXIC dataset.

https://doi.org/10.1371/journal.pone.0211402.g014
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